Discounting 2016 ## Think About It... Why does charging interest make sense? Why is interest an exchange? ### Decision Time Option A: a cost of 100 this year but a return 200 in benefits next year Option B: a benefit of 50 this year and next year. Both net \$100 of benefit, but which is better? ## A Bit o' Math #### Math • Use subscripts for elements in a sequence: • Superscripts are exponents: $$a^3 = a \times a \times a$$ ### Math Percent means "per hundred" Simple interest (P=principal, R=interest rate) #### Problem If the world is paying 3% then... \$915.14 TODAY equals \$1000 THREE YEARS FROM NOW The PRESENT VALUE of \$1000 paid 3 years from now is \$915.14 #### Problem I put 1000 in the bank for a year at 5%... $$P_1 = P_0 \times (1+R)$$ $$1000 = P_o \times (1 + 0.05)$$ $$P_o = 1050$$ ### Problem If I want to have 1000 in the bank 3 years from now, how much should I deposit today if the interest rate is 3%? $$P_3 = P_0 \times (1+R)^3$$ $$1000 = P_o \times (1 + 0.03)^3$$ $$P_o = \frac{1000}{\left(1.03\right)^3} = \frac{1000}{1.0927} = 915.14$$ Write an expression for how much you will have (FV, for "future value") if you put PV ("present value") dollars into an account at R percent interest for one year. Simplify the expression. What if it were N years? $$FV = (1 + R)PV$$ $$FV = (1 + R)^N PV$$ Write an expression for how much you "have" now (PV) if you expect FV dollars N years ahead at R percent. $$PV = \frac{FV}{(1+R)^N}$$ #### Three Problems I've got this project.... What is - 1. PV of \$500 I'll have to pay at end of one year of project. - 1. PV of \$250 I'll have to pay at end of two years of project. - 2. PV of \$800 I'll receive at end of third year of project. Assume 5% discount rate ## Three Problems | | 1 | 2 | 3 | |-----|--------------------|-------------------------|--------------------------------------| | Pay | 500 | 250 | | | Get | | | 800 | | PV | -500 -476 1.05 | $-\frac{-250}{226.726}$ | 800
691 03
(1.05) ³ | -11.88 Assume 5% discount rate ## Internal Rate of Return Discount rate at which PV of project equals 0 What does that mean? ## Internal Rate of Return | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----|-----|-----|-----|---|----|----|----|----|----| | -25 | -20 | -15 | -10 | 0 | 25 | 25 | 25 | 25 | 25 | -23.81 + -18.14 + -12.96 + -8.23 + 0 + 18.66 + 17.77 + 16.92 + 16.12 + 15.35 = 21.67 At 5% discount rate. But what about other rates? What does that mean? ## Internal Rate of Return | DR | PV | |-----|-------| | 1% | 46.9 | | 2% | 39.6 | | 3% | 33.0 | | 4% | 27.1 | | 5% | 21.7 | | 6% | 16.8 | | 7% | 12.4 | | 8% | 8.4 | | 9% | 4.8 | | 10% | 1.5 | | 11% | -1.5 | | 12% | -4.2 | | 13% | -6.6 | | 14% | -8.8 | | 15% | -10.8 | | 16% | -12.6 | | 17% | -14.2 | | 18% | -15.7 | | 19% | -17.0 | | 20% | -18.2 | | 21% | -19.3 | | 22% | -20.2 | | 23% | -21.1 | | 24% | -21.9 | | 25% | -22.5 | Still don't get it ## Scenario Projects cost first, benefit later. Should I do this or should I do nothing? aka "GO/NO GO" Decision Should I do this or should I do nothing? aka "GO/NO GO" Decision DECISION RULE: Do the project if the internal rate of return is greater than the discount rate Should I do project A or project B? Should I do project A or project B? DECISION RULE: Choose the project with the higher internal rate of return Caveats #### GOLD has higher IRR (A) but if the discount rate is C, #### BLUE has the higher PV. But if the discount rate is B, neither project is better than doing nothing. Caveats The project has two IRRs! How? Early costs, mid-term benefits, late costs #### Bottom Line "Choose highest IRR" only works if - 1. no budget constraint - 2. projects do not preclude each other - 3. streams are first negative then positive #### THUS, Choose project or mix of projects with highest PV at given discount rate ## Project Problem A state agency is considering a childcare subsidy that would facilitate single parents' attainment of college degrees. The benefit would cost \$10k per recipient per year for four years. The expectation is that individuals with a college degree will earn more than individuals without a college degree. This means that they generate more revenue in the form of income tax. They are also less likely to require government assistance of various kinds — call this amount A. Assume current rules limit us to a ten year time horizon. Assume the average salary difference between non-college grads and college grads is **D** (but get the real info here) and that the marginal tax rate can be found here. Assume a 5% discount rate. At first, ignore inflation. ## Payback Periods "project pays for itself in N years" "choose project with shortest payback period" #### Year **Project** -100 Project -100 B has higher PV across range of Drs ## Consider 2 Projects A: fewer upfront costs sooner **A:** smaller revenue later | YEAR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |-----------|-----|-----|-----|----|---|---|----|----|----|----| | PROJECT A | -15 | -5 | 5 | 10 | 8 | 6 | 4 | 2 | 1 | 1 | | PROJECT B | -15 | -10 | -10 | -5 | 4 | 4 | 15 | 15 | 15 | 15 | **B:** more upfront costs later **B:** larger revenue later ## Consider 2 Projects #### What about Inflation? - Cost of things goes up so the value of a dollar changes over time. - Use "deflator" to convert "nominal" \$ into YYYY \$ - Usual deflator is consumer price index (CPI) - Look up CPI at Bureau of Labor Statistics - Select a base year. - Divide all CPIs by the CPI of the base year - Divide nominal values by this number | | | | | | | | | | - | |--------------|--------------------------------------|---------------------------------------|---|---|---|---|---|--|------------------| | 8.7
12.3 | 6.9
4.9
6.7
9.0
13.3 | 12.5
8.9
3.8
3.8
3.9 | 3.8
1.1
4.4
4.4
4.6 | 6.1
3.1
2.9
2.7
2.7 | 2.5
3.3
1.7
1.6
2.7 | 3.4
1.6
2.4
1.9
3.3 | 3.4
2.5
4.1
.1
2.7 | 1.5
3.0
1.7
1.5
.8 | - | | 44.4
49.3 | 53.8
56.9
60.6
65.2
72.6 | 82.4
90.9
96.5
99.6
103.9 | 107.6
109.6
113.6
118.3
124.0 | 130.7
136.2
140.3
144.5
148.2 | 152.4
156.9
160.5
163.0
166.6 | 172.2
177.1
179.9
184.0
188.9 | 195.3
201.6
207.342
215.303
214.537 | 218.056
224.939
229.594
232.957
236.736 | - | | | | 104.9 | 108.5
110.1
114.9
119.7
125.3 | 132.6
137.2
141.4
145.3
149.3 | 153.2
157.9
161.2
163.7
167.8 | 173.6
177.5
180.9
184.6
190.2 | | 218.576
226.280
230.338
233.548
237.088 | - | | | : | 102.9 | 106.6
109.1
112.4
116.8
122.7 | 128.7
135.2
139.2
143.7
147.2 | 151.5
155.8
159.9
162.3
165.4 | 170.8
176.6
178.9
183.3
187.6 | 193.2
200.6
205.709
214.429
213.139 | 217.535
223.598
228.850
232.366
236.384
236.265 | ot available | | 1973
1974 | 1975
1976
1977
1978
1979 | 1980
1981
1982
1983
1984 | 1985
1986
1987
1988
1989 | 1990
1991
1992
1993
1994 | 1995
1996
1997
1998
1999 | 2000
2001
2002
2003
2004 | 2005
2006
2007
2008
2009 | 2010
2011
2012
2013
2014 | 2016
- Data n | | | | | | | | l | | | | 6.2 11.0 5.4 Suppose I have 6 years of cost data and I want to express em in "constant" dollars, specifically, 2005 dollars. | | 3.0
3.0
2.6 | | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | |----|--------------------|------|-------|---------------------|-------|-------|-------------------|-------| | l | Dak | · O. | 2005 | 2006
4.35 | 2007 | 2008 | 2009
53 | 2010 | | | Data | | 434 | 435 | 34 | 32 | 53 | 76 | | | CPI | | 190.7 | 198.3 | 202.4 | 211.1 | 211.1 | 216.7 | | | CPI/bas | se | 1 | 1.04 | 1.06 | 1.11 | 1.11 | 1.14 | | | math | | 434 | 435 | _34_ | 32 | _53_ | 76 | | | main | | 1 | 1.04 | 1.06 | 1.11 | 1.11 | 1.14 | | e: | Data 20
Dollars | | 434 | 418.3 | 32 | 28.9 | 47.9 | 66.9 | NOTE: Index applies to a month as a whole, not to any spe