Discounting
 2016

Why is a bird in the hand is worth two in the bush.

Think About It...

Why does charging interest make sense? Why is interest an exchange?

Decision Time

Option A: a cost of 100 this year but a return 200 in benefits next year

Option B: a benefit of 50 this year and next year.

Both net $\$ 100$ of benefit, but which is better?

A Bit o' Math

Math

- Use subscripts for elements in a sequence:
$B_{1} B_{2} B_{3}$ represents balance in
years 1,2 , and 3
- Superscripts are exponents:

$$
a^{3}=a \times a \times a
$$

Math

- Percent means "per hundred"

$$
5 \%=5 / 100=0.06
$$

- Simple interest (P=principal, R=interest rate)

$$
P_{n}=(1+R)^{n} \times P_{0}
$$

Problem

If the world is paying 3% then...

$$
\$ 916.14 \text { TODAY }
$$

equals

\$1000 THREE YEARS FROM NOW

The PRESENT VALUE of \$1000 paid 3 years from now is $\$ 915.14$

Problem

I put 1000 in the bank for a year at 5\%...

$$
P_{1}=P_{0} \times(1+R)
$$

$$
\begin{aligned}
1000 & =P_{0} \times(1+0.05) \\
P_{0} & =1080
\end{aligned}
$$

Problem

If I want to have 1000 in the bank 3 years from now, how much should I deposit today if the interest rate is 3% ?

$$
\begin{aligned}
P_{3} & =P_{0} \times(1+R)^{3} \\
1000 & =P_{0} \times(1+0.03)^{3} \\
P_{0} & =\frac{1000}{(1.03)^{3}}=\frac{1000}{1.0927}=916.14
\end{aligned}
$$

Write an expression for how much you will have (FV, for "future value") if you put PV ("present value") dollars into an account at R percent interest for one year. Simplify the expression. What if it were N years?

$$
\begin{aligned}
& F V=(1+R) P V \\
& F V=(1+R)^{N} P V
\end{aligned}
$$

Write an expression for how much you "have" now (PV) if you expect FV dollars N years ahead at R percent.

$$
P V=\frac{F V}{(1+R)^{N}}
$$

Three Problems

I've got this project.... What is

1. PV of $\$ 500$ I'll have to pay at end of one year of project.
2. PV of $\$ 250$ I'll have to pay at end of two years of project.
3. PV of $\$ 800$ I'll receive at end of third year of project.

Assume 5\% discount rate

Three Problems

Assume 5\% discount rate

Internal Rate of Return

Discount rate at which PV of project equals 0

What does that mean?

Internal Rate of Return

1	2	3	4	5	6	7	8	9	10
-25	-20	-15	-10	0	25	25	25	25	25

$-23.81+-18.14+-12.96+-8.23+0+18.66+17.77+16.92+16.12+15.35=21.67$

At 5\% discount rate. But what about other rates?
What does that mean?

Internal Rate of Return

DR	PV
1%	46.9
2%	39.6
3%	33.0
4%	27.1
5%	21.7
6%	16.8
7%	12.4
8%	8.4
9%	4.8
10%	1.5
11%	-1.5
12%	-4.2
13%	-6.6
14%	-8.8
15%	-10.8
16%	-12.6
17%	-14.2
18%	-15.7
19%	-17.0
20%	-18.2
21%	-19.3
22%	-20.2
23%	-21.1
24%	-21.9
25%	-22.5

Still don't get it

Scenario

Projects cost first, benefit later.

Basic Policy Choice

Should I do this or should I do nothing?

aka "GO/NO GO" Decision

Basic Policy Choice

Should I do this or should I do nothing? aka "GO/NO GO" Decision

DECISION RULE: Do the project if the internal rate of return is greater than the discount rate

Basic Policy Choice

Should I do project A or project B?

Basic Policy Choice
 Should I do project A or project B?

DECISION RULE: Choose the project with the higher internal rate of return

Basic Policy Choice Caveats

GOLD has higher IRR (A)
but if the discount rate is C,
BLUE has the higher PV.
But if the discount rate is B, neither project is better than doing nothing.

Basic Policy Choice Caveats

The project has two IRRs! How?
Early costs, mid-term benefits, late costs

Bottom Line

"Choose highest IRR" only works if

1. no budget constraint
2. projects do not preclude each other
3. streams are first negative then positive

THUS,

Choose project or mix of projects with highest PV at given discount rate

Project Problem

A state agency is considering a childcare subsidy that would facilitate single parents' attainment of college degrees. The benefit would cost $\$ 10 \mathrm{k}$ per recipient per year for four years. The expectation is that individuals with a college degree will earn more than individuals without a college degree. This means that they generate more revenue in the form of income tax. They are also less likely to require government assistance of various kinds - call this amount A. Assume current rules limit us to a ten year time horizon. Assume the average salary difference between non-college grads and college grads is \mathbf{D} (but get the real info here) and that the marginal tax rate can be found here. Assume a 5\% discount rate. At first, ignore inflation.

Payback Periods

"project pays for itself in N years"
"choose project with shortest payback period"

						Q	
Year	0	1	2	3	4	5	6
Project	-100	35	35	35	0	0	0
Project	-100	30	30	30	30	30	30

Naive Running Balance

Yee
Proj
Proj

B has higher PV across range of Drs

Consider 2 Projects

Consider 2 Projects

What about Inflation?

- Cost of things goes up so the value of a dollar changes over time.
- Use "deflator" to convert "nominal" \$ into YYYY \$
- Usual deflator is consumer price index (CPI)
- Look up CPI at Bureau of Labor Statistics
- Select a base year.
- Divide all CPIs by the CPI of the base year
- Divide nominal values by this number

