Discounting

2016

Think About It...

Why does charging interest make sense? Why is interest an exchange?

Decision Time

Option A: a cost of 100 this year but a return 200 in benefits next year

Option B: a benefit of 50 this year and next year.

Both net \$100 of benefit, but which is better?

A Bit o' Math

Math

• Use subscripts for elements in a sequence:

• Superscripts are exponents:

$$a^3 = a \times a \times a$$

Math

Percent means "per hundred"

Simple interest (P=principal, R=interest rate)

Problem

If the world is paying 3% then...

\$915.14 TODAY

equals

\$1000 THREE YEARS FROM NOW

The PRESENT VALUE of \$1000 paid 3 years from now is \$915.14

Problem

I put 1000 in the bank for a year at 5%...

$$P_1 = P_0 \times (1+R)$$

$$1000 = P_o \times (1 + 0.05)$$

$$P_o = 1050$$

Problem

If I want to have 1000 in the bank 3 years from now, how much should I deposit today if the interest rate is 3%?

$$P_3 = P_0 \times (1+R)^3$$

$$1000 = P_o \times (1 + 0.03)^3$$

$$P_o = \frac{1000}{\left(1.03\right)^3} = \frac{1000}{1.0927} = 915.14$$

Write an expression for how much you will have (FV, for "future value") if you put PV ("present value") dollars into an account at R percent interest for one year. Simplify the expression. What if it were N years?

$$FV = (1 + R)PV$$

$$FV = (1 + R)^N PV$$

Write an expression for how much you "have" now (PV) if you expect FV dollars N years ahead at R percent.

$$PV = \frac{FV}{(1+R)^N}$$

Three Problems

I've got this project.... What is

- 1. PV of \$500 I'll have to pay at end of one year of project.
- 1. PV of \$250 I'll have to pay at end of two years of project.
- 2. PV of \$800 I'll receive at end of third year of project.

Assume 5% discount rate

Three Problems

	1	2	3
Pay	500	250	
Get			800
PV	-500 -476 1.05	$-\frac{-250}{226.726}$	800 691 03 (1.05) ³

-11.88

Assume 5% discount rate

Internal Rate of Return

Discount rate at which PV of project equals 0

What does that mean?

Internal Rate of Return

1	2	3	4	5	6	7	8	9	10
-25	-20	-15	-10	0	25	25	25	25	25

-23.81 + -18.14 + -12.96 + -8.23 + 0 + 18.66 + 17.77 + 16.92 + 16.12 + 15.35 = 21.67

At 5% discount rate. But what about other rates?

What does that mean?

Internal Rate of Return

DR	PV
1%	46.9
2%	39.6
3%	33.0
4%	27.1
5%	21.7
6%	16.8
7%	12.4
8%	8.4
9%	4.8
10%	1.5
11%	-1.5
12%	-4.2
13%	-6.6
14%	-8.8
15%	-10.8
16%	-12.6
17%	-14.2
18%	-15.7
19%	-17.0
20%	-18.2
21%	-19.3
22%	-20.2
23%	-21.1
24%	-21.9
25%	-22.5

Still don't get it

Scenario

Projects cost first, benefit later.

Should I do this or should I do nothing?

aka "GO/NO GO" Decision

Should I do this or should I do nothing? aka "GO/NO GO" Decision

DECISION RULE: Do the project if the internal rate of return is greater than the discount rate

Should I do project A or project B?

Should I do project A or project B?

DECISION RULE: Choose the project with the higher internal rate of return

Caveats

GOLD has higher IRR (A)

but if the discount rate is C,

BLUE has the higher PV.

But if the discount rate is B, neither project is better than doing nothing.

Caveats

The project has two IRRs! How?

Early costs, mid-term benefits, late costs

Bottom Line

"Choose highest IRR" only works if

- 1. no budget constraint
- 2. projects do not preclude each other
- 3. streams are first negative then positive

THUS,

Choose project or mix of projects with highest PV at given discount rate

Project Problem

A state agency is considering a childcare subsidy that would facilitate single parents' attainment of college degrees. The benefit would cost \$10k per recipient per year for four years. The expectation is that individuals with a college degree will earn more than individuals without a college degree. This means that they generate more revenue in the form of income tax. They are also less likely to require government assistance of various kinds — call this amount A. Assume current rules limit us to a ten year time horizon. Assume the average salary difference between non-college grads and college grads is **D** (but get the real info here) and that the marginal tax rate can be found here. Assume a 5% discount rate. At first, ignore inflation.

Payback Periods

"project pays for itself in N years"

"choose project with shortest payback period"

Year **Project** -100 Project -100

B has higher PV across range of Drs

Consider 2 Projects

A: fewer upfront costs sooner

A: smaller revenue later

YEAR	1	2	3	4	5	6	7	8	9	10
PROJECT A	-15	-5	5	10	8	6	4	2	1	1
PROJECT B	-15	-10	-10	-5	4	4	15	15	15	15

B: more upfront costs later

B: larger revenue later

Consider 2 Projects

What about Inflation?

- Cost of things goes up so the value of a dollar changes over time.
- Use "deflator" to convert "nominal" \$ into YYYY \$
- Usual deflator is consumer price index (CPI)
- Look up CPI at Bureau of Labor Statistics
- Select a base year.
- Divide all CPIs by the CPI of the base year
- Divide nominal values by this number

									-
8.7 12.3	6.9 4.9 6.7 9.0 13.3	12.5 8.9 3.8 3.8 3.9	3.8 1.1 4.4 4.4 4.6	6.1 3.1 2.9 2.7 2.7	2.5 3.3 1.7 1.6 2.7	3.4 1.6 2.4 1.9 3.3	3.4 2.5 4.1 .1 2.7	1.5 3.0 1.7 1.5 .8	-
44.4 49.3	53.8 56.9 60.6 65.2 72.6	82.4 90.9 96.5 99.6 103.9	107.6 109.6 113.6 118.3 124.0	130.7 136.2 140.3 144.5 148.2	152.4 156.9 160.5 163.0 166.6	172.2 177.1 179.9 184.0 188.9	195.3 201.6 207.342 215.303 214.537	218.056 224.939 229.594 232.957 236.736	-
		104.9	108.5 110.1 114.9 119.7 125.3	132.6 137.2 141.4 145.3 149.3	153.2 157.9 161.2 163.7 167.8	173.6 177.5 180.9 184.6 190.2		218.576 226.280 230.338 233.548 237.088	-
	:	102.9	106.6 109.1 112.4 116.8 122.7	128.7 135.2 139.2 143.7 147.2	151.5 155.8 159.9 162.3 165.4	170.8 176.6 178.9 183.3 187.6	193.2 200.6 205.709 214.429 213.139	217.535 223.598 228.850 232.366 236.384 236.265	ot available
1973 1974	1975 1976 1977 1978 1979	1980 1981 1982 1983 1984	1985 1986 1987 1988 1989	1990 1991 1992 1993 1994	1995 1996 1997 1998 1999	2000 2001 2002 2003 2004	2005 2006 2007 2008 2009	2010 2011 2012 2013 2014	2016 - Data n
						l			

6.2 11.0

5.4

Suppose I have 6 years of cost data and I want to express em in "constant" dollars, specifically, 2005 dollars.

	3.0 3.0 2.6		2005	2006	2007	2008	2009	2010
l	Dak	· O.	2005	2006 4.35	2007	2008	2009 53	2010
	Data		434	435	34	32	53	76
	CPI		190.7	198.3	202.4	211.1	211.1	216.7
	CPI/bas	se	1	1.04	1.06	1.11	1.11	1.14
	math		434	435	_34_	32	_53_	76
	main		1	1.04	1.06	1.11	1.11	1.14
e:	Data 20 Dollars		434	418.3	32	28.9	47.9	66.9

NOTE: Index applies to a month as a whole, not to any spe